

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2023

INFORMATION AND COMMUNICATION TECHNOLOGY PAPER 2D

Software Development

Question-Answer Book

11:15 am – 12:45 pm (1 hour 30 minutes) This paper must be answered in English

INSTRUCTIONS

- (1) After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5 and 7.
- (2) Answer **THREE** out of four questions. Write your answers in the spaces provided in this Question-Answer book. Do not write in the margins. Answers written in the margins will not be marked.
- (3) Supplementary answer sheets will be supplied on request. Write your candidate number, mark the question number box and stick a barcode label on each sheet, and fasten them with string **INSIDE** this book.
- (4) No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.

Please stick the barcode label here.

Candidate Number

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2023

I

Answer THREE questions only.

1. Eva plans to write a burger cooking game. She uses a queue A to store the ingredients. A is implemented by an array L. She designs subprograms with global variables, as shown below:

Global variable	Description
L	An array for storing the elements in A with indices from 1 to 5
С	A variable for storing the number of elements in A

Subprogram	Description
enq(A, K)	Inserts an element K in A if A is not full
deq(A)	Removes and returns an element in A if A is not empty

(a) Suppose that C = 0. After sequentially executing enq(A, Fish) and enq(A, Onion),

C = 2 and

i	1	2	3	4	5
L[i]	Fish	Onion			

enq(A, K) outputs a message 'Full!' when A is full. Complete the pseudocode for enq below.

enq(A, K)

output 'Full!'

else

$$C \leftarrow C + 1$$

(2 marks)

Answers written in the margins will not be marked

(b) (i) Suppose that C = 3 and

i	1	2	3	4	5
L[i]	Onion	Tomato	Bacon		

Then, after executing deq(A),

C = 2 and

i	1	2	3	4	5
L[i]	Tomato	Bacon			

Fill in the content of L after further sequentially executing deq(A), enq(A, Cheese), enq(A, Beef) and deq(A).

i	1	2	3	4	5
T []]					
Г[1]					

(2 marks)

(ii) Complete the pseudocode for deq below.

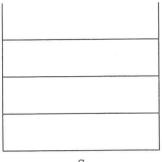
(2 marks)

In the game, Eva uses a stack S to represent a burger. She writes cook(A) using the following subprograms where queue A stores all the ingredients of the burger.

Subprogram	Description
push(S, K)	Inserts an element K in S as its top element
flip(S)	Reverses the order of all elements in S

In the following example, after executing flip(S), the order of all elements in S is reversed.

Fish		Onion
Bread		Beef
Beef	flip(S)	Bread
Onion		Fish
S	•	S


Suppose that A stores all the ingredients of a specific burger. Eva writes cook(A) to cook the ingredients in A. Suppose that S is initially empty.

cook(A)
 while A is not empty do
 push(S, deq(A))
 flip(S)

(c) (i) Suppose that the content of L is:

i	1	2	3	4	5
L[i]	Beef	Onion	Bread	Bread	

Fill in the content of $\, S \,$ below, after executing $\, \, cook \, (A) \, .$

S

(2 marks)

Answers written in the margins will not be marked.

(ii) Suppose that the content of $\, {\mbox{S}} \,$ after executing $\, {\mbox{cook}} \, ({\mbox{A}}) \,$ is:

Bread	
Tomato	
Lettuce	
Beef	
Bread	

S

Fill in the initial content of \bot below.

i	1	2	3	4	5
L[i]					

(2 marks)

Another queue B is implemented by an array R.

(d) (i) Suppose that the initial contents of S and R are:

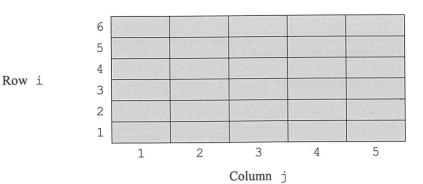
Onion
Mushroom
Tomato
Fish

· i	1	2	3	4	5
R[i]					

S

pop(S) is a subprogram that removes and returns the top element of S. Fill in the contents of S and R after sequentially executing enq(B, pop(S)), enq(B, pop(S)) and enq(B, pop(S)).

i	1	2	3	4	5
R[i]					


S

(2 marks)

(3 marks)

(ii) Complete the pseudocode for flip(S) below.

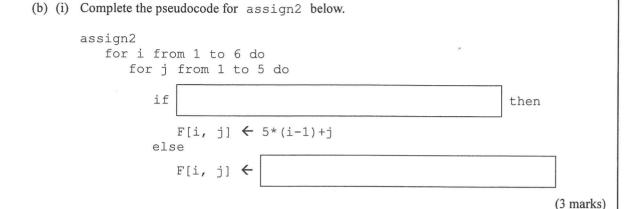
There are 30 booths in a food fair. Mary designs a floor plan with 6 rows and 5 columns. She uses an array F[i,j] to store the booth number of the booth in row i, column j.

Mary writes a subprogram assign1 that assigns booth numbers to F, as shown below:

assign1 for i from 1 to 6 do for j from 1 to 5 do
$$F[i, j] \leftarrow 5*(i-1) + j$$

(a) (i) Write down the booth number stored in F[5, 4].

(1 mark)


(ii) Write down the indices of the element in F that stores booth number 17.

(1 mark)

Answers written in the margins will not be marked.

Mary modifies assign1 to assign2 to reassign the booth numbers in the floor plan, as shown below:

	6	30	29	28	27	26
	5	21	22	23	24	25
	4	20	19	18	17	16
Row i	3	11	12	13	14	15
	2	10	9	8	7	6
	1	1	2	3	4	5
	,	1	2	3	4	5
				Column	j	

(ii) Mary writes a subprogram findRow(num) that returns the row number of the booth with the booth number num. For example, findRow(30) returns 6. Write the pseudocode for findRow(num).

```
findRow(num)
```

(2 marks)

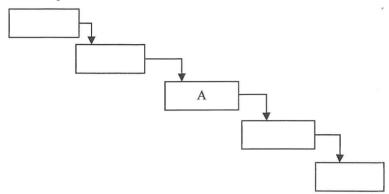
Answers written in the margins will not be marked.

There are 10 vegetarian booths in the food fair and their booth numbers are stored in an array P in ascending order, as shown below:

i	1	2	3	4	5	 10
P[i]	4	7	13	16	18	 28

Mary writes a subprogram is Veg (num) that returns TRUE if num is in P, FALSE otherwise.

(iii) Complete the pseudocode for isVeg(num) below.


Answers written in the margins will not be marked.

(3 marks)

(c)	Mary considers using a low level language and a linker to develop the subprograms.
	(i) Give an advantage of using low level language for software development.
	(1 mark
	(ii) Describe the major function of a linker in the execution of a program.
	(2 marks
(1)	
(d)	Mary compares phased conversion and direct cutover conversion for system conversion. Give at advantage of each kind of conversion.
	Phased conversion:
	Direct cutover conversion:
	(2 marks

- (A) System implementation
- (B) System conversion
- (C) System analysis
- (D) System maintenance
- (E) System design

(a) (i) Fill in the phases in the Waterfall model below.

(ii) What does Peter do in the system maintenance phase?

(2 marks)

(1 mark)

Answers written in the margins will not be marked.

The Gantt chart of the project is shown below.

	Week			 		 	!			! !		i !	! !
Task		1	2	3	4	5	6	7	8	9	10	11	12
Task one				1 1 1 1	1	П	! !	Y ! !		! !		1 1 1 1	Y i i L
		1 1 1		! ! !			1 1 1 1	! ! !	 	! ! !	! ! !	! !	! ! !
Task two		i ! !	L	! ! !		(((i i i i	i) 1		i i i i	<u> </u>	! !	i ! !
Task three		! ! ! ! !		((H	! ! ! !	! ! ! ! ! !	! ! ! ! ! !		! !		<u> </u>	! ! ! ! ! ! !
Task four		! ! ! ! !				! ! ! !	i	! ! ! !	-			í í	i)
Task five		! ! !	 	L		1 1 1 1 1	1	1	<u> </u>		! ! ! !	! ! ! !	! ! !

(b) (i) What is the critical path of the project?

(1 mark)

(ii) Suppose that Task three finally needs 4 weeks to complete. What is the minimum number of weeks required to complete the project?

(2 marks)

Peter develops a program with the following subprograms to sort integers in an array A in ascending order. All integers in A are distinct.

Subprogram	Description
findmin(s, e)	Return the index of the minimum value in A[s], A[s+1],, A[e]
	where s < e.
findmax(s, e)	Return the index of the maximum value in A[s], A[s+1],, A[e]
	where s < e.
swap(x, y)	Swap the values of A[x] and A[y].

Suppose that the initial content of A contains 7 integers:

i	1	2	3	4	5	6	7
A[i]	19	28	11	43	9	16	23

findmin(1, 4) returns 3 and findmax(3, 5) returns 4.

(c) (i) What is the return value of findmax(5, 7)?

(1 mark)

(ii) Complete the pseudocode for findmax(s, e) below.

(3 marks)

Peter tries to write the pseudocode for a subprogram sub1 for sorting.

sub1
 for j from 1 to 3 do
 a ← findmin(j, 8 - j)
 b ← findmax(j, 8 - j)
 swap(j, a)
 swap(8 - j, b)

(d) (i) Suppose that the initial content of A is:

i	1	2	3	4	5	6	7
A[i]	19	28	11	43	9	16	23

Fill in the content of A after the first pass and second pass of the loop in sub1.

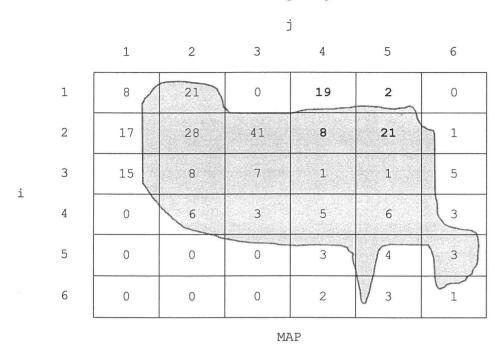
After the first pass

i	1	2	3	4	5	6	7
A[i]							

After the second pass

i	1	2	3	4	5	6	7
A[i]		¥					

(2 marks)


(ii) With the value in A[6] after the second pass, Peter understands that an incorrect sorting result is obtained. To correct the algorithm, he modifies sub1 to sub2. Complete the pseudocode for sub2 below.

(3 marks)

Answers written in the margins will not be marked.

2023-DSE-ICT 2D-11

4. A map is represented by $N \times N$ cells. John works in a food delivery company. He uses an array MAP to store the number of restaurants in each cell. The following example shows MAP with N=6.

John writes a subprogram sum(i, j, K) that returns the sum of the numbers in $K \times K$ cells where MAP[i, j] is the top left cell. For example, sum(1, 4, 2) returns 19+2+8+21 = 50 where

(a) (i) What is the return value of sum(1, 4, 3)?

MAP[1, 4] is the top left cell.

(1 mark)

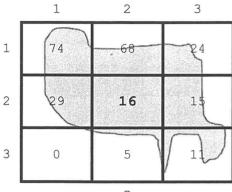
(ii) What are p and q so that sum(p, q, 2) returns the maximum value among all the 2×2 cells?

(1 mark)

i

(b) John writes a subprogram Zoomout (K) that merges K×K cells into 1 cell by calculating the sum of the numbers in the K×K cells for MAP and storing the calculated sums in an array Z.

i


(i) For N = 6 and K = 2,

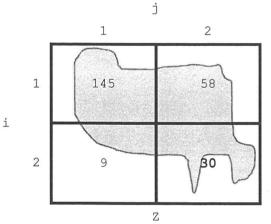
i

j

MAP

j

The value of Z[2, 2] is the return value of sum(r, 3, 2). What is r?


(1 mark)

Answers written in the margins will not be marked

(ii) For N = 6 and K = 3,

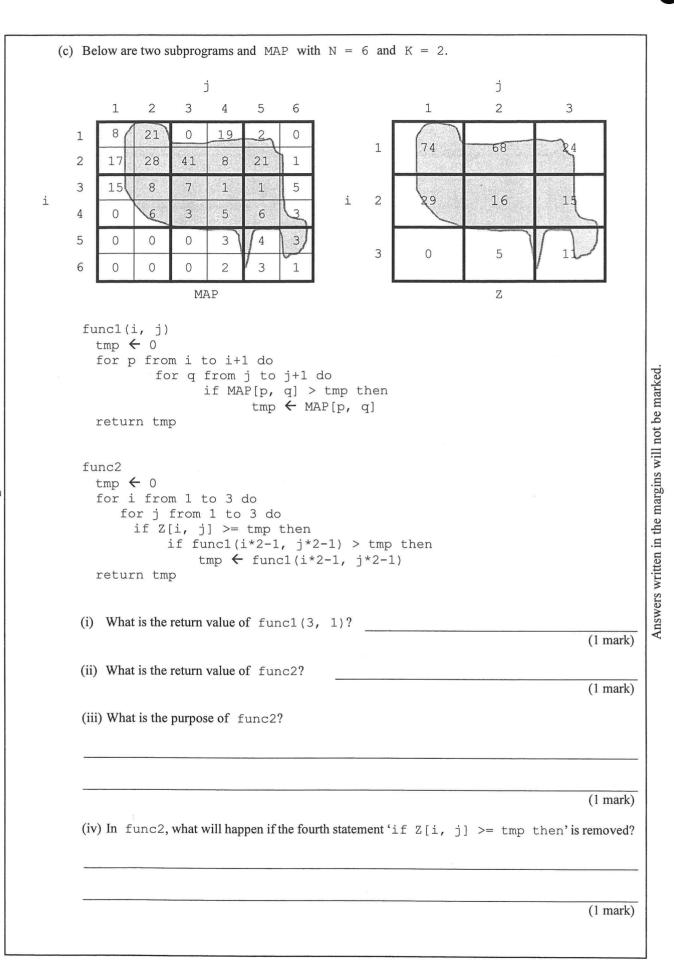
j

MAP

The value of Z[2, 2] is the return value of sum(4, s, 3). What is s?

(1 mark)

(iii) Suppose that N is divisible by K. Complete the pseudocode for Somout(K).


Zoomout (K)

for i from 1 to N/K do for j from 1 to N/K do

 $Z[i, j] \leftarrow sum($

	 	 _
1		- 1
1		
1		
1		- 1

(2 marks)

(d)	John insists on using a compiler instead of an interpreter to write programs. Give a reason to support his decision.
(e)	(1 mark) Some programming languages provide libraries to develop programs. Give two advantages of using
``	libraries.
	(2 marks
(f)	John uses Java, which is an object-oriented language, to develop programs. Give two advantages o object-oriented languages over procedural languages.
	(2 marks
	END OF PAPER

Do not write on this page.

Answers written on this page will not be marked.