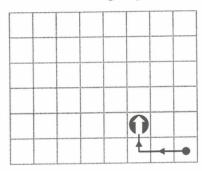
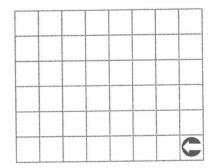

Answer THREE questions only.


1. Peter buys a programmable window cleaner for cleaning a window with dimensions of 8 × 6 units. The initial state (position and heading direction) of the cleaner is shown in the diagram below.


There are two subprograms provided by the manufacturer for commanding the cleaner:

Subprogram	Description			
MF	Move forward 1 unit.			
TR	Turn 90 degrees clockwise.			

For example, the path and final state of the cleaner $\mathbf{0}$ after executing MF, MF, TR, MF at its initial state are shown in the following diagram.

(a) Draw the path and final state of the cleaner after executing TR, MF, MF, MF, TR, TR, TR, MF at its initial state.

(2 marks)

Answers written in the margins will not be marked.

1	Place	ctick	tho	barcode	lahal	horo
ı	riease	STICK	tne	parcode	label	nere.

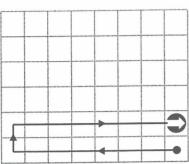
Peter writes two additional subprograms for commanding the cleaner:

Subprogram	Description			
FD(N)	Move forward N units.			
TL	Turn 90 degrees anti-clockwise.			

(b) (i) Complete the pseudocode for FD(N) below.

for i from 1 to _____ do
$$_{\mbox{\scriptsize MF}}$$

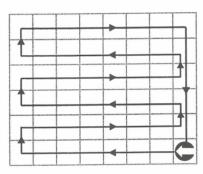
(1 mark)


(ii) Complete the pseudocode for TL below.

(1 mark)

Answers written in the margins will not be marked.

Answers written in the margins will not be marked.


Peter writes two subprograms ProA and ProB.

(c) The diagram above shows the path and final state of the cleaner after executing ProA at its initial state. Write the pseudocode for ProA.

(2 marks)

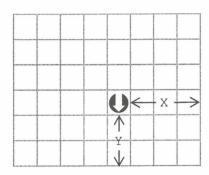
(d) The diagram above shows the path and final state of the cleaner after executing ProB at its initial state. The cleaner finally returns to its initial state. Complete the pseudocode for ProB below.

for i from 1 to 2 do

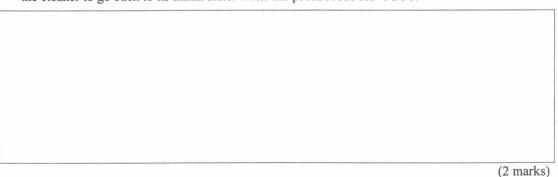
MF _____

FD(5)

(3 marks)


Answers written in the margins will not be marked.

Answers written in the margins will not be marked.


The following global variables are used to store the current state of the cleaner:

Variable	Description			
X	The horizontal distance from the initial state			
Y	The vertical distance from the initial state			
D	An integer value indicates the current direction of the cleaner: $0 = \mathbf{C}$; $1 = \mathbf{O}$; $2 = \mathbf{O}$; $3 = \mathbf{O}$			

For example, when X = 3, Y = 2 and D = 3, the current state of the cleaner is shown below.

- (e) Peter writes subprograms to command the cleaner to go back to its initial state.
 - (i) He assumes D = 3 and writes a subprogram ProC with the use of X and Y that commands the cleaner to go back to its initial state. Write the pseudocode for ProC.

(ii) He writes a subprogram ProD that commands the cleaner to go back to its initial state whatever the value of D (from 0 to 3) is. Complete the pseudocode for ProD below.

ProC

(2 marks)

Answers written in the margins will not be marked.

Go on to the next page

(f)	The subprograms can be developed by using low-level languages or high-level languages advantage of using each type of languages.	. Give an
		(2 1)
		(2 marks)

2. Eva creates a stack S where a variable N stores the number of elements in S. She uses the following subprograms:

Subprogram	Description		
clear(S)	Removes all elements in S.		
isEmpty(S)	Returns TRUE if S is empty, FALSE otherwise.		
push(S,K)	Inserts an item K in S as its top element.		
pop(S)	Removes and returns the top element of S.		

(a) (i) Write down the value of N and X after executing the following pseudocode:

(2 marks)

Answers written in the margins will not be marked.

(ii) Write the pseudocode for isEmpty(S).

(2 marks)

Answers written in the margins will not be marked.

6

A is an array of 5 elements storing non-negative integers and at least one '+' character. Eva writes the pseudocode for a subprogram Sub1.

```
Sub1
  clear(S)
  for i from 1 to 5 do
     if A[i] <> '+' then
           push(S, A[i])
     else
            B \leftarrow pop(S)
            C \leftarrow pop(S)
           push(S, B+C)
  return pop(S)
```

For example, the return value of Sub1 is 3 for the following initial content of A.

i	1	2	3	4	5
A[i]	0	0	1	2	+

(b) (i) Write down the return value of Sub1 for the initial content of A below.

i	1	2	3	4	5
A[i]	1	2	3	+	+

(1 mark)

Answers written in the margins will not be marked.

(ii) Write down the return value of Sub1 for the initial content of A below.

i	1	2	3	4	5
A[i]	1	2	3	+	4

(2 marks)

Go on to the next page

Eva modifies Sub1 to Sub2 by rewriting the last statement, as shown below:

```
Sub2
  clear(S)
  for i from 1 to 5 do
    if A[i] <> '+' then
        push(S, A[i])
  else
        B ← pop(S)
        C ← pop(S)
        push(S, B+C)
  if N = 1 then
    return pop(S)
  else
    return -1
```

(c) (i) Complete the following initial content of A that will make Sub2 return -1.

i	1	2	3	4	5
A[i]	1			1	

(2 marks)

(ii) There is a problem in Sub2 when pop(S) is executed with an empty S. Complete the following initial content of A that will cause such a problem.

i	1	2	3	4	5
A[i]	1			1	1

(1 mark)

(d) Eva modifies Sub2 to Sub3 with the use of a Boolean variable flag to solve the problem in(c)(ii). Complete Sub3 below.

```
Sub3
  clear(S)
   flag ← TRUE
   for i from 1 to 5 do
                                    then
        if
           if A[i] <> '+' then
                push(S, A[i])
           else if
                                               then
                      B \leftarrow pop(S)
                      C \leftarrow pop(S)
                      push(S, B+C)
                  else
                      flag ← FALSE
   if N = 1 then
         return pop(S)
   else
         return -1
```

Answers written in the margins will not be marked.

(2 marks)

(e) Eva performs the following tasks in developing an information system:

Task	Duration (day)	Depending on
A	1	_
В	2	_
С	2	_
D	2	_
Е	2	A, B, C, D
F	1	Е
G	5	A
Н	1	E, F, G

She drafts the following Gantt chart for the development.

					DAY				
1	2	3	4	5	6	7	8	9	10
Task A									-
	Tas	k B							
Tas	k C								
Tas	k D								
		Tas	k E						
			Task F						
			Task G						
						Task H			

(i) State two major mistakes in the chart and their respective corrections.

(2 marks)

Answers written in the margins will not be marked.

(ii) Eva decides to use a compiler instead of an interpreter for developing the system. Give a reason to support her decision.

(1 mark)

Answers written in the margins will not be marked.

Go on to the next page

	8	8	16	24	32	40
	7	7	15	23	31	39
	6	6	14	22	30	38
_	5	5	13	21	29	37
Seat	4	4	12	20	28	36
	3	3	11	19	27	35
	2	2	10	18	26	34
	1	1	9	17	25	33
		1	2	3	4	5
				Row		

In the above seating plan, the numbers in the cells are the class numbers of 40 students. For example, the student with class number 12 sits in row 2, seat 4. Ms Li uses an array SP[i,j] to store the class number in row i, seat j, and thus SP[2,4] = 12.

(a) Write down the indexes of the element in SP that stores class number 23.

(1 mark)

Answers written in the margins will not be marked.

(b) AssignCN is a subprogram that assigns class numbers to SP according to the above seating plan. Complete the pseudocode for AssignCN below.

Ms Li writes the pseudocode for a subprogram ArrangeSeat that rearranges the seats for students randomly.

Line number	Content
1	ArrangeSeat
2	for i from 1 to 5 do
3	for j from 1 to 8 do
4	r \leftarrow a random integer between 1 and 5 inclusive
5	s \leftarrow a random integer between 1 and 8 inclusive
6	<pre>swap SP[i,j] and SP[r,s]</pre>

(c) Suppose that a function rand returns a random number between 0 to 0.99 inclusive. Rewrite Line 5 using rand.

S	\leftarrow		
		(2	marks)

(d) (i) Ms Li writes a subprogram FindStudent(k) using linear search to find the row number and seat number of the student with class number k. Complete the pseudocode for FindStudent(k) below.

(1 mark)

(ii) The if statement in FindStudent(k) will be executed a definite number of times. Suggest an improvement in the algorithm to enhance its efficiency.

(2 marks)

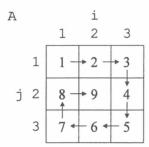
(iii) Ms Li chooses not to use binary search in (d)(i). Why not? Explain briefly.

(1 mark)

Answers written in the margins will not be marked

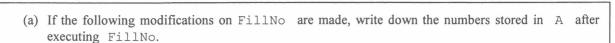
(e) Ms Li writes a subprogram CheckNeighbour for checking whether any two students with consecutive class numbers sit in:

- 1. the same row number and consecutive seat numbers, or
- 2. consecutive row numbers and the same seat number


Complete the pseudocode for CheckNeighbour below.

CheckNeighbour

(4 marks)


4. The subprogram FillNo assigns numbers from 1 to 9 spirally in a clockwise direction to a two-dimensional array A[i,j], as shown below:

John writes the pseudocode for FillNo:

Line number 1 2 3	<pre>Content Initialise all elements in A as 0 X ← 1 Y ← 1</pre>
4	D ← 0
5	DX ← 1
6	DY ← 0
7	for k from 1 to 9 do
8	$A[X,Y] \leftarrow k$
9	if $(X+DX = 0)$ or $(X+DX > 3)$ or $(Y+DY = 0)$ or
10	(Y+DY > 3) or $(A[X+DX,Y+DY] > 0)$ then
11	$D \leftarrow D + 1$
12	D \leftarrow remainder of (D/4)
13	if $D = 0$ then $DX \leftarrow 1$
14	DY ← O
15	else if $D = 1$ then $DX \leftarrow 0$
16	DY ← 1
17	else if D = 2 then DX \leftarrow -1
18	DY \leftarrow 0
19	else DX ← 0
20	DY ← −1
21	$X \leftarrow X + DX$
22	Y ← Y + DY

Answers written in the margins will not be marked.

Line 8 is modified to: $A[4-X, 4-Y] \leftarrow k$

Line 10 is modified to: (Y+DY > 3) or (A[4-X-DX, 4-Y-DY] > 0) then

А		1	i 2	3
	1			
j	2		-	
	3			

(2 marks)

- (b) For each of the following cases, modify FillNo so as to assign the numbers below to A.
 - (i) Modify Line 8 and 10.

A			i	
		1	2	3
	1	1	8	7
j	2	2	9	6
	3	3	4	5

Line 8:

Line 10:

(3 marks)

(ii) Modify only one line.

A			i	
		1	2	3
	1	9	8	7
j	2	2	1	6
	3	3	4	5

Line ____:

(2 marks)

(c)	John plans to implement FillNo with either a procedural language or an object-oriented language.					
	(i) Suggest two criteria for selecting a programming language.					
	(2 1					
	(ii) Give two characteristics of an object-oriented language, other than the concept of an object.					
(1)	(2 1					
(u)	John integrates subprograms into an information system.(i) John has completed the system test. Why does he still need to conduct a user acceptance test two reasons for this.					
	(2 r					
	(ii) Why is system documentation so important in the system development? Give two reasons for					
	(2 r					
	END OF PAPER					